A Fast and More Accurate Seed-and-Extension
Density-based Clustering Algorithm

Ming-Hao Tung, Yi-Ping Phoebe Chen Senior Member, IEEE,
Chen-Yu Liu and Chung-Shou Liao Senior Member, IEEE

Abstract—Clustering algorithms have been widely studied in many scientific areas, such as data mining, knowledge discovery,
bioinformatics and machine learning. A density-based clustering algorithm, called density peaks (DP), which was proposed by
Rodriguez and Laio, outperforms almost all other approaches. Although the DP algorithm performs well in many cases, there is still
room for improvement in the precision of its output clusters as well as the quality of the selected centers. In this study, we propose a
more accurate clustering algorithm, seed-and-extension-based density peaks (SDP). SDP selects the centers that hold the features of
their clusters while building a spanning forest, and meanwhile, constructs the output clusters in a seed-and-extension manner.
Experiment results demonstrate the effectiveness of SDP, especially when dealing with clusters with relatively high densities. Precisely,
we show that SDP is more accurate than the DP algorithm as well as other state-of-the-art clustering approaches concerning the
quality of both output clusters and cluster centers while maintaining similar running time of the DP algorithm, particularly for a variety of
time-series data. Moreover, SDP outperforms DP in the dynamic model in which data point insertion and deletion are allowed. From a

practical perspective, the proposed SDP algorithm is obviously helpful to many application problems.

Index Terms—Clustering, center selection, density peaks, seed-and-extension, spanning tree

1 INTRODUCTION

HERE are many types of clustering algorithms such as
T partitioning, hierarchical (i.e. distance-based clustering)
and density-based clustering algorithms [18], [24], [13], [5],
[11], [12], [10], [9], [28], [15]. Partitioning algorithms such
as K-means [18], [24] and K-medoid [13] typically start
with an initial partition and then iteratively move the cluster
centers to optimize an objective function, which is usually
the sum of the squared error. Density-based algorithms
such as DBSCAN [5] and its variants [11], [10], [9], [12]
distinguish data points as Core, Border and Noise based
on the density of each point, and the algorithms group
those that are sufficiently close. The clusters of density-
based algorithms are defined by areas in which the density
of the data points is high, and clusters are separated from
each other by areas of low density. Readers can be referred
to recent surveys [26], [17], [29].

The recently proposed density peaks algorithm (DP)
presents a new clustering approach [27]. DP merges both
characteristics of partitioning and density-based clustering
algorithms. First, DP selects cluster centers in a similar way
to K-medoids and finds the density peaks of an input
dataset as centers. Next, DP identifies clusters by linking
neighboring dense regions to form clusters like DBSCAN,
which makes DP capable of finding the clusters with arbi-
trary shapes. Some recent work [4], [8] claimed that their
improved clustering algorithms outperforms DP (e.g., using
K -nearest neighbors under the framework of DP), but DP
still has better performance in most cases. In addition, DP
has other advantages: for instance, DP is a deterministic
algorithm; i.e., DP always gets the same output clusters.
However, there is room for improvement over the precision
of the output clusters and the quality of the selected centers
of DP. Precisely, datasets in which there are many nearby
clusters with high densities may make DP fail. More details

are presented later in Section 2.2.

In this study, we design a clustering algorithm, called
SDP (seed-and-extension-based density peaks), which is
built on a similar framework to the DP algorithm. As men-
tioned, there exist some cases in which DP fails to correctly
find all clusters. We overcome the challenges using a seed-
and-extension center selection approach. Briefly, similar to
the idea of DP, we pick the centers as seeds that are capable
of representing the property of input datasets, and we
extend from the seeds to obtain their corresponding clusters.
Note that both our SDP algorithm and DP perform through
three major procedures, i.e. calculating two quantities, se-
lecting cluster centers based on the above two quantities,
and assigning the input data points to each cluster.

We first revisit the DP algorithm which, in addition to
the all-pairs distance matrix, requires two input parameters:
cutoff distance d. and the number of clusters k. Next, for
each data point 7, we compute two quantities: local density
pi and the minimum distance between point ¢ and any other
points with a higher density, denoted by d;. Rodriguez and
Laio [27] formally defined the two quantities as follows:

Definition 1. The local density p; of a data point i is defined to
be the number of data points within a given cutoff distance d. to
the point i.

pi = {7 [dij < dc}|
Definition 2. Each data point i, except the one with the highest
density, has its Closest data point with a Higher Density (CHD),

where the distance between the point ¢ and its CHD is denoted
max{di; }, if pi = max{py};

otherwise.

5 =
‘ ‘min {d;;},

J:pj>pi

Note that DP is performed based on two assumptions:
(i) cluster centers are surrounded by points with a lower
density, and (ii) centers are at a relatively large distance from
each other. Using two quantities p and §, DP can provide a
two-dimensional graph, called a decision graph, to gain new
insights into the data distribution and intuitively determine
cluster centers [27].

TABLE 1
Three Subroutines of the DP and SDP algorithms

Subroutine 1: Calculate p and 0
Input: Data, the input dataset; d., the cutoff distance
Output: Two quantities p and §

Subroutine 2: Select cluster centers
Input: Number of clusters k; Two quantities p and ¢
Output: Cluster centers

Subroutine 3: Cluster assignment
Input: Cluster centers; Closest data points with a higher density
Output: All data points with their cluster assignment label

Briefly speaking, DP just compute the -y list of all possible
combinations of p and d, where 7; = p; x d;. Following the
descending order of the v list, the top k£ data points (i.e.
the points with the highest k values) can be heuristically
selected to be cluster centers (see Algorithm 1). In the proce-
dure of assigning data points (Subroutine 3), each remaining
data point ¢ is assigned to the cluster in which i’s closest data
point with a higher density (denoted by CHD;) lies. (More
details of DP can be referred to Fig.51 in the Supplementary:.)

Algorithm 1: Cluster Center Selection of DP

Input: k, the number of clusters; p, a local density vector for
each point in the dataset; J, the distance between each
point and its CHD point

Output: centers, a list of the points as cluster centers

array(centers) = (J;

i = pi x 0; for every point ¢;

: Ysorted = Sort(7y, descend);

: for i=1tokdo
push Ysorted(i) into array(centers);

end for

AU N

The key difference between DP and our SDP algorithm
lies in the procedure of center selection (i.e. Subroutine 2).
More precisely, we build a spanning forest step by step
based on the two quantities p and § (derived in Subrou-
tine 1), and preserve the connectivity of each spanning tree
as far as possible. Meanwhile, we select cluster centers as
seeds along the tree edges in a top-down manner. Next, each
cluster grows up from its seed using a seed-and-extension
method. That is, we actually perform Subroutines 2 and 3
simultaneously while constructing the spanning trees, and
repeat the steps until all data points are assigned. There
are three advantages of the SDP clustering algorithm: first,
the connectivity preservation (along tree edges) ensures
the quality of the derived clusters. Second, the spanning
forest structure speeds up update operations in the dynamic
model. Third, the seed-and-extension approach which is
running during the procedure of center selection can avoid
too many centers with high density but close to each other.
Later, we demonstrate SDP’s superior performance against
the DP algorithm, especially considering time-series input

2

datasets. Moreover, in comparison with the cluster assign-
ment procedure of DP (i.e. Subroutine 3), we apply two
different types of assignment approaches: distance-based
assignment and density-based assignment. The former, sim-
ilar to K-medoids [13], assigns data points to their nearest
centers, and the latter, similar to DP, assigns each data point
to the cluster in which the point’s closest neighbor with a
higher density lies.

Based on the design of our SDP algorithm, the experi-
ment results show that the cluster centers selected by SDP
are of better quality than DP and other state-of-the-art clus-
tering algorithms. Furthermore, the density-based assign-
ment, just like DP, has the ability to cluster input datasets
with non-spherical shapes. On the other hand, the distance-
based assignment can assign input points according to their
distances to the centers, which can form a Voronoi diagram
in the geometric plane. Based on the above fact, we then
choose one of the two assignment strategies with respect
to the properties of input datasets.

A summary of the main contributions in this paper is as
follows:

1) We design a new center selection strategy, i.e. the seed-
and-extension-based density peaks (SDP) algorithm
which performs more accurately while maintaining
similar computational time.

2) We determine the condition under which the DP algo-
rithm fails to find correct clusters.

3) We compare SDP against well-known clustering al-
gorithms: K-means, Agglomerative Hierarchical, DB-
SCAN, DP and two state-of-the-art clustering algo-
rithms: SPECTACL [9] and DENCLUE 2.0 [10], to
demonstrate its superior performance, especially for a
variety of input datasets.

4) We design the dynamic version of SDP and demon-
strate its merits in the dynamic model from both theo-
retical and practical perspectives.

This paper is organized as follows: in Section 2, we in-
troduce SDP, and then conduct numerical experiments and
evaluate the performance of our algorithm in Section 3. Then
we extend SDP to deal with time-series data in Section 4.
We also present dynamic SDP and highlight its merits in
Section 5. Finally, we conclude with some discussions.

2 SDP: SEED-AND-EXTENSION DENSITY PEAKS

Recall the key idea of DP: cluster centers are the points
that are surrounded by points with a lower density, and
the distance between every two centers is relatively large.
As mentioned, there are also three main subroutines in our
SDP algorithm: calculating the quantities p and §, center
selection and cluster assignment. Briefly, the first subroutine
is similar, and the second step is to find potential center
candidates from the y list (based on the two quantities p and
0) and locally select cluster centers along a spanning forest
structure, where two nodes are connected in a tree if one
node is the other’s CHD. In the meantime, we extend from
the centers as seeds to derive clusters. In the following, we
introduce the details of our SDP algorithm and its difference
from DP.

2.1 Algorithms

The major difference between DP and SDP is the procedure
of center selection. DP picks the top k points from the sorted
« list (in descending order) as centers, where v, = p; X §;
for each point ¢. In contrast, our SDP algorithm constructs a
spanning forest for center selection as well as the seed-and-
extension procedure as follows.

2.1.1

We derive the -y list in Subroutine 1, after calculating p; and
0; of each data point i. We also obtain CHD; for each point ¢,
where the distance between ¢ and CHD; is ;. Initially, we
select the point with the highest density as the root, say
O. Then, we link every point j to O if O is the CHD of j.
Precisely, there is a directed edge from j to 7 in the tree if
and only if ¢ is the CHD of j. We thus construct a spanning
tree level by level and start the seed-and-extension procedure
from O, i.e. the first seed. Here the root O is at level 0 and
every point whose CHD is O is O’s child at level 1 in the
tree. Then we link the remaining points in a breadth-first-
search manner if their CHD are O’s children, and repeat
the procedure. Therefore, the cluster grows from O while
constructing the tree (see Algorithm 2).

In addition, we devise two types of thresholds when
performing the procedure. First, we construct the spanning
tree within a given region, i.e. considering only the points
under a threshold distance from the root O. We usually set
the threshold to be the given cutoff distance or a smaller value
sometimes. Next we design the second threshold to restrict
the construction of a spanning tree. That is, when connecting
a point ¢ with its parent, i.e. CHD;, we eliminate the directed
edge if the edge distance, i.e. §; is larger than the threshold.
Here we let the threshold to be a significantly larger value
than the average distance between CHD; and its children.
Precisely, we usually set the threshold to be the mean of
the distance between every point and its CHD plus the two
standard deviations. (In this study, we use the usual setting
of the two thresholds to conduct all the experiments.) The
cluster thus keeps growing until all the incoming edges are
larger than the second threshold or all the points within the
given region have been already considered. Subsequently,
we consider the remaining points in the v list and pick
the next center candidate in descending order. We repeat
the seed-and-extension procedure from the center as a seed.
Note that the whole process actually generates a spanning
forest due to the setting of the two thresholds; that is, each
component which forms a cluster is actually a tree in the
spanning forest.

Based on the seed-and-extension procedure, our SDP
algorithm performs more accurately than the DP algorithm.
The reason why SDP can guarantee a better performance is
because the algorithm considers not only the global prop-
erty (i.e. p and J in the decision graph) of input datasets but
also the local connectivity between every point and its CHD.
Each spanning tree we constructed preserves the connection
between the points within the corresponding cluster. More-
over, the seed-and-extension approach which incorporates
cluster assignment into the procedure of center selection can
particularly avoid SDP to pick many nearby centers with
high densities. The SDP algorithm thus outperforms DP as

Construct spanning trees for center selection

3

well as other well-known clustering algorithms, especially
when an input instance contains many points with relatively
high densities.

Algorithm 2: Cluster Center Selection of SDP

Input: Data, the input clustering dataset; k, the number
of clusters; Vsorted, the vector in descending order for
center candidates; CHD, the closest data point with a
higher density; ¢, the distance to CHD

Output: centers, a list of the points as cluster centers; As-
signment, cluster labels for each data point

1: while cluster_label < k and j < size of Data do

2 if Assignment(j) is already done then
3 J++;
4 continue
5 else
6: center(cluster_label) = Vsorted(7);
7: withinnode = ﬁnd(dcenter(cluster_label),: <d.);
8 withinnode =
9: intersect(withinnode, find(CHD=center(1)));
10: while withinnode is not empty do
11: withinnode =
12: withinnode \ { Outlier of dyithinnode };
13: Assignment(withinnode) = cluster_label;
14: next = ﬁnd(dwithinnode,: < dc);
15: next = intersect(next, find(CHD=withinnode));
16: withinnode = next;
17: end while
18: cluster_label++;
19: J++
20: end if

21: end while

2.1.2 A concrete example

We use an instance, as shown in Figure 1, to illustrate the
steps of Algorithm 2. In line 6, we first pick the next unas-
signed (or unselected) data point in the + list in descending
order as the center of the current cluster (as a seed), e.g.,
initially root O in Figure 1. In this example, suppose node O
has the highest local density po, i.e. an absolute density peak.
We thus let O be the root of a spanning tree and extend the
cluster from the seed while building the spanning tree. Note
that the spanning tree is constructed within a region, called
local zone, bounded by the first threshold distance from the
root (i.e. seed), as mentioned earlier. Here, we let the given
cutoff distance, d. be the threshold and consider only the
points within d. from O (see line 7).

Next, we use the breadth-first-search approach to con-
struct the spanning tree level by level, as shown in lines 8-17.
Precisely, assume the local density of points A, B, C'and D
are presented in descending order as pp > pa > pB > pc;
besides, assume O is CHD of A, B, C and D. Hence, O is
the root node at level 0, and squares A, B, C' and D presents
the tree nodes at the first level of the spanning tree, where
the value of §; for these nodes are a, b, c and d, respectively.
We repeat the construction, and the tree nodes at the second
level are represented by triangles (i.e. nodes E, F/, etc.).

Notice that in lines 11-12, we use the second thresh-
old to restrict the construction of the spanning tree. That
is, we ignore point ¢ if 0; is larger than the threshold

(i.e. ¢ is an outlier), defined by either Interquartile Range
(IQR) [14] or the mean plus two standard deviations. (Here
both the definitions of an outlier actually perform well in
our experiment.) In this example, we therefore remove the
directed edge from C to O (i.e. C is an outlier), as well
as the triangles £ and F. Then, the seed-and-extension
procedure continues until all the points within the local zone
are considered. Subsequently, we select the next data point
in the sorted + list to be a center (i.e. seed) and repeat the
above procedure to construct another spanning tree.

AN RO,
AN

A
i

Fig. 1. An example illustrating how a spanning tree is constructed by the
relationship between point : and its CHD;, i.e. the seed-and-extension
procedure, where the tree nodes in the first level are represented by
squares and the nodes in the second level are represented by triangles

2.1.3 Cluster assignment

The rationale behind our SDP algorithm is a seed-and-
extension strategy for center selection and cluster assign-
ment. Furthermore, after performing the seed-and-extension
procedure (i.e. linking a tree node with its children), we
consider the remaining points that are not in the local
zone of any cluster centers. We actually use two types of
assignment approaches: density-based (denoted by SDPgen)
assignment and distance-based (denoted by SDPg;s) assign-
ment, according to the required property of output clusters.
For the density-based assignment (SDPg4en), as shown in
Algorithm 3, each remaining data point is assigned to its
CHD’s cluster in a similar way to DP. That is, every tree
edge is defined by the connection between point ¢ and its
CHD,, as conducted by Algorithm 2. Therefore, the SDPgen
algorithm also has the ability to cluster datasets with non-
spherical shapes. Note that the procedure sometimes results
in a bad cluster whose size might be too big; in other words,
some points in the cluster might belong to other clusters.
On the other hand, the distance-based assignment (SDPg;s),
which greedily assigns each remaining point to its closest
center (see lines 4-11 in Algorithm 4), sometimes becomes
a better choice for finding clusters with similar properties.
Note that, for the detection of outliers (i.e. the setting of the
second threshold), we can simply use either the cluster halo
provided by the DP algorithm [27] or a threshold distance
to the cluster centers. We describe the details of the two
assignment approaches in Algorithms 3 and 4, respectively.

Algorithm 3: SDPgen: Density-based Cluster Assignment

Input: Data, the input clustering dataset; centers, list of the
points as cluster centers; p, local density vector for all
points in dataset; 9, the distance to the CHD points;
CHDs, the CHD points

Output: Assignment, cluster labels for each data point

1: [psorted, sortedIndex] = Sort(p, descend);

2: for i = 1 to the size of Data do

3 if Assignment(sortedIndex(i)) is not done then

4: Assign sortedIndex(i) to the cluster in which
5: its CHD point lies;

6 end if

7: end for

Algorithm 4: SDPg;.: Distance-based Cluster Assignment

Input: Data, the input clustering dataset; centers, a list of the
points as cluster centers;
Output: : Assignment, cluster labels for each data point

1:
2: for ¢ =1 to the size of Data do
3: if Data(1) is not assigned then
4; bsf = inf;
5: for j = 1 to the number of centers do
6: if di,centers(j) < be then
7: be = di,center(j);
8: bsfcenter = center(j);
9: end if
10: end for
11: Assignment(i) = Assignment(center(j));
12: end if
13: end for

2.2 A worst-case instance for the DP algorithm

The center selection process of the DP algorithm considers
only the descending order of the «y list, which might cause
the distance between some pairs of the selected centers to
be too small. Precisely, the worst scenario is illustrated as
follows: let the number of clusters be k and the cluster
centers be the top k points picked from the sorted -y list.
Because every 7; is the product of p; and J;, the data point
may be selected to be a center with a large value of p; but a
small value of J;. More intuitively, these centers chosen by
DP may be too close to each other.

Figure 2 shows a worst-case numerical example, where
the 50 Words dataset, retrieved from [2], was used to test DP
and SDP. The 50 Words dataset is time-series data, which can
reveal a significant difference between the two algorithms.
We thus exploited the time series version of the DP algo-
rithm, called TADPole [1], for the test dataset, where the
input similarity distance of every pair of points is calculated
by dynamic time warping (DTW) [1]. Figure 2 shows the
partial clustering result of the 50 Words dataset. There are
18 big pink diamonds (left) and only three big blue squares
(right), each of which represents a cluster center, obtained by
DP and our SDP algorithm, respectively. Here the diamonds
and the squares correspond to the correct points with the
Class 1 label provided by the UCR Archive[2]. As shown in
Figure 2 (left), the diamonds are split into many different
clusters; in contrast, Figure 2 (right) shows the clustering

T e

Ve,

’o RS A
¢ o ‘7"." R
= e

o o |
L - .
® N L u
R ST)
- 2 [] : ,I..
o " i o «* . ll'._
- :."..
.mam
m ug
u u

Fig. 2. (Left) The partial clustering result of the 50 Words dataset derived by the density peaks (DP) algorithm, where the 18 big nodes (diamonds
in pink) represent the cluster centers; (Right) The result obtained by SDP, where there are only three big nodes (squares in blue), representing the

cluster centers

result derived by SDP, which accurately partitions the points
with the Class 1 label into only three clusters.

The key reason why our seed-and-extension strategy
performs more accurately than DP is that while we hold
similar assumptions about DP by applying the local zone to
each cluster, i.e., using the first threshold distance (e.g., the
given cutoff distance), which can preserve the connectivity
within each cluster, we also ensure that the center of each
cluster is not too close to each other. Precisely, the distance
between the selected centers is at least larger than the second
threshold distance. That is, we consider the points with an
extremely high density to be noises and skip them if they
are not at a relatively large distance.

3 EXPERIMENTAL EVALUATION

In this section, we first demonstrate the effectiveness of our
new center selection strategy regarding cluster performance
and center quality. Here we provide a new performance
measure, called center quality whose details are introduced
in Section 3.3. Moreover, we show that SDP overcomes
the weakness of DP when dealing with datasets that have
significantly different densities and similarity distances be-
tween each data point in a non-metric space (e.g. DTW for
time series data). In Section 3.1, we describe the datasets,
the experiment settings and cluster performance measures.
We compare two versions of our SDP algorithm: distance-
based (SDPgist) and density-based (SDPgen) assignment with
density peaks (DP) and other state-of-the-art algorithms in
Section 3.2. Note that we attempted to apply kernel density
estimation using Guassian kernel [10] to define the local
density of a point instead of the traditional counting-based
approach (Definition 1), but it does not perform better.
Finally, we introduce the new measure, center quality, and
have more observations in Section 3.3.

3.1 Experiment setup

Machine Configuration. The experiments were conducted on a
machine with Intel Core i5-6500 3.20GHz and 32GB memory.

All algorithms used in our experiments were implemented
in Python (version 3.6)[23].

Datasets. For each dataset, we computed the similarity ma-
trix as an input for all algorithms. In the initial experiment,
the similarity matrices are calculated in a metric space. Later,
we carry out the other experiments for time-series data in
the next section. Table 2 presents the properties of each
dataset.

TABLE 2
Dataset properties

Dataset # of Instances # of Features # of Clusters

aggregation 788 2 7
flame 240 2 2

s3 5000 2 15
wine 178 13 3
wdbc 569 30 2
ecoli 336 7 8
dermatology 358 34 6

Performance Measurement. We evaluated the output of the
algorithms by considering pairs of the data points [31].
Precision is calculated as the fraction of pairs that are cor-
rectly assigned to the same cluster; recall is the fraction of
actual pairs that are identified by the algorithms. Precision
and recall provide different perspectives to evaluate the
performance. In addition, F-measure is the harmonic mean
of precision and recall and shows the overall performance
of a predicted result. We give the definition of F-measure as

follows: ..
Precision x Recall
F-measure =2 X —M————
Precision + Recall

Moreover, when the datasets have a large number of classes
which usually have more pairs of True Negatives, we can
consider another measure: Rand index. Rand index measures
the fraction of pairs that are correct. Formally, Rand index is
defined as follows:

True Positive 4+ True Negative

n)

(2)
where n is the number of data points. We also consider
another widely-used measure for evaluating clustering ap-

Rand Index =

proaches, Normalized Mutual Information (NMI) [12]. Here
is the formal definition:

2x I1(Y;C)
H(Y)+ H(C)’
where H(Y) = — >, P(yx)log P(yx) denotes the entropy
of class labels and P(yy,) denotes the probability that points
belong to the class yj. The mutual information I(Y;C) =

H(Y)— H(Y|C). The higher NMI means the better quality
of clustering. NMI can be used to compare two clusterings

NMI(Y, C) =

6

performs best excluding the aggregation and flame datasets,
and SDPg4en, and DP achieve the exact same result, except
for the ecoli and dermatology datasets. In the next section,
we compare the performance of these algorithms over time-
series data, which reveals SDP’s significant improvement
against DP.

TABLE 4
Performance comparison between SDP and other clustering algorithms
over multi-dimensional datasets

that have differgnt number of clusters since it is normalized. Algorithm | Precision | Recall | F-Measure | Rand Index | NMI
Here we set minPts = 10 and ¢ = 0.03 for DBSCAN. For e
SPECTACL, we set k = 10, suggested by [9]. We give the —pearchicar T 08670 [08830 | 08749 09147 [078
best setting of the smoothing parameter for DENCLUE 2.0 K-Means 0.8743 | 0.8599 0.8670 0.9109 0.78
(e.g., h = 0.08 for aggregation and h = 0.28 for wine). S?E(SEQEIL 8%% 822% 82?2; 82%‘11 8;‘2)
As .shown 1n. Tablgs 3 an.d 4, SDP outp_erforms all the DENCLUE 0.8128 0.7429 0.7763 0.8553 0.72
clustering algorithms including DP regarding F-measure, DP 0.8549 0.8411 0.8479 0.8981 0.77
Rand index and NMI. In particular, SDPgist performs better SDPgen 0.8549 0.8411 0.8479 0.8981 0.77
than SDPgen in almost all the test datasets, except the two- SDPgist 0.9144 0.9031 15 0.9087 0.9387 0.84
. . . . Wi C
dimensional datasets. Besides, notice that the performance —p 57 To8700 07490 0.6790 036
of SDPgen and DP are almost the same except for the two K-Means 0.7422 0.8417 0.7889 0.7605 0.43
high dimensional datasets: ecoli and dermatology which DBSCAN 0.5961 | 0.6203 0.6080 0.5747 0.26
: : : SPECTACL 0.7826 0.7475 0.7647 0.7554 0.41
have ov'erlappm% borders.1 1Next }\:ve dlslcuss' the c}et}zlalls ;)f the DENCLUE 05392 0.9975 0.6941 0.5306 0.01
comparison results as well as the evaluation of the cluster DP 0.8780 0.9155 0.8964 0.8874 0.68
center quality over the metric datasets. SDPen 0.8780 | 0.9155 0.8964 0.8874 0.68
SDPg;st 0.8925 0.9230 0.9075 0.8999 0.70
ecoli
Performance comparison betwe-lc—ep;]BégSand other clustering algorithms Hierarchical 0.6704 0.5919 0.6287 0.8112 0.63
over two-dimensional datasets K-Means 0.7473 0.4382 0.5525 0.8082 0.56
DBSCAN 0.5478 0.8409 0.6635 0.7696 0.50
K . SPECTACL 0.7457 0.5163 0.6102 0.8218 0.55
Algorlthrn Precision Recall F-Measure Rand Index NMI DENCLUE 0.4766 0.9419 0.6330 0.7050 0.53
aggregation DP 07047 | 04340 | 05372 0.7980 0.58
Hierarchical | 0.9510 | 0.8574 | 0.9018 0.9596 0.89 SDPgen 07232 | 0.8197 | 0.7684 0.8665 0.69
K-Means 09146 | 0.7324 0.8134 0.9273 0.86 SDPagist 0.7592 | 0.7679 0.7635 0.8715 0.69
DBSCAN 09984 | 09584 | 0.9780 0.9906 0.97 dermatology
SPECTACL 0.9572 0.8000 0.8715 0.9489 0.92 Hierarchical 0.5114 0.7229 0.5991 0.8061 0.73
DENCLUE 0.8591 0.9358 0.8958 0.9529 0.91 K-Means 0.7711 0.7306 0.7503 0.9025 0.84
DP 1.0000 | 1.0000 1.0000 1.0000 1.00 DBSCAN 0.5052 | 0.7245 0.5953 0.8026 0.68
SDPgecn 1.0000 1.0000 1.0000 1.0000 1.00 SPECTACL 0.7345 0.7393 0.7369 0.8942 0.80
SDPgist 09794 | 09128 0.9449 0.9770 093 DENCLUE | 05571 | 0.8525 0.6739 0.8346 0.72
flame DP 0.8585 0.8503 0.8544 0.9419 0.81
Hierarchical | 0.5225 0.7429 0.6135 0.4985 0.07 SDPgen 0.7572 | 0.8498 0.8008 0.9153 0.84
K-Means 0.7579 0.7046 0.7303 0.7211 0.40 SDPaist 0.8875 | 0.9271 0.9069 0.9452 0.89
DBSCAN 0.9844 0.9632 0.9737 0.9721 0.88
SPECTACL 0.9556 0.9685 0.9620 0.9590 0.85 he foll . look i h ¢ 1
DENCLUE | 09748 | 09790 | 0.9769 09752 | 090 In the following, we look into the performance result
DP 1.0000 1.0000 1.0000 1.0000 1.00 according to the different properties of the datasets. As
SDPgen 1.0000 1.0000 1.0000 1.0000 1.00 shown in Tables 3 and 4, the distance-based clustering
SDPaist 0.9693 0.9693 8 0.9693 0.9671 0.87 algorithm, K-Means, did not perform well in recall over
S . .
Hierarchical 04398 06192 05469 09317 070 the aggregation and flame (and ecoli) datasets. In contrast,
K-Means 0.7317 0.7350 0.7334 0.9644 0.79 based on the center selection strategy, SDP and DP de-
DBSCAN 0.2334 | 0.6541 0.3440 0.8339 0.54 rived a completely correct clustering result over aggregation
SPECTACL 0.5298 0.5679 0.5481 0.9376 0.69 .
DENCLUE 0.7449 0.7507 0.7488 0.9664 0.80 and flame. O.n .the other hand, K-means performs beFter
DP 0.7464 0.7532 0.7497 0.9665 0.80 for the remaining datasets. However, the pure density-
SDPgyen 0.7464 | 0.7532 0.7497 0.9665 0.80 based algorithm, DBSCAN which has a very good perfor-
SDPgist 07522 | 0.7558 | 0.7540 0.9672 080 mance over aggregation and flame with shaped clusters

3.2 Comparison result

We initially test the datasets in which the similarity distance
between each pair of points is measured in the metric
space. Tables 3 and 4 shows the performance measurement
of each algorithm. Obviously, SDP outperforms the other
algorithms regarding each measure over all the datasets
(except recall over the wdbc dataset). More precisely, SDP it

performed poorly in precision over the other five datasets:
s3, wine, wdbc, ecoli and dermatology. One can observe
that SPECTACL which incorporates the spectrum of an
input similarity matrix into DBSCAN, can compensate the
flaw of DBSCAN for these datasets in which clusters may
have overlapping borders. However, for time-series data,
the performance of SPECTACL is surprisingly worse than
DBSCAN, as shown in the next section. The experiment
results reveal that these clustering algorithms may have

significantly different performance according to the dataset
properties, although SDP still performed better than all the
others over every dataset.

aggregation_SDP_density aggregation DBSCAN

:
N .

-04 I&W
06

06

‘aggregation_Spectac aggregation_Denclue

“
. X
02 02
;
A

P

.

é
"

3_SDP_density s3_DBSCAN

53 Denclue

Fig. 3. Clustering results of SDP, DBSCAN, SPECTACL, DENCLUE over
two-dimensional datasets: (top) aggregation (bottom) s3

Figure 3 (Figure 4) illustrates the key difference between
the clustering results of SDPg4en, DBSCAN, SPECTACL and
DENCLUE 2.0 over the datasets: aggregation and s3 (wine
and ecoli, respectively). Although DBSCAN performs well
in aggregation with shaped clusters, the setting of minPts
and ¢ obviously affects the performance. For s3, wine and
ecoli, DBSCAN missed some points and considered them
to be outliers (yellow points). SPECTACL improves the
performance of DBSCAN but still cannot extend their clus-
ters to derive a correct clustering even for aggregation and
wine. On the other hand, DENCLUE 2.0 exploits a (new)
hill climbing approach for identifying the local maxima of
a density estimation function (and then assigns points to
the local maxima), which is somehow similar to the center
selection procedure in DP. It coped with most of the metric
datasets well, epecially two-dimensional data; however, it
derived a poor clustering over wdbc, ecoli and dermatology
(especially for wdbc, which can be indicated by the measure
of NMI (0.01), as shown in Figure S7 in the supplementary).
Note that DENCLUE 2.0 actually derived four clusters (one
more than the correct solution) for wine, when achieving its
best clustering result.

wine_SDP_density wine_DBSCAN

ecoli_ DBSCAN

ecoli_SDP_density
oo
.y’ £y
sbz‘@.
St e’

o, * oo '.
0s0 ;.\'.:{,ﬁ" e . ‘ 0s0
0s{ * o% ot Lo . | 1 o
* . »22
Selele wop *

000] et St s ote . 000
- W\; Ly . o Taghh
| CRRERTETT IR SNE

. . ©

-050 -025 000 025 o050 o075 100 050 -025 000 025 05 075 100

ecoli_Spectac! ecoli_Denclue

O o A
£ O ‘f’t‘sfi .
000] ‘o Y e 0ol %e* DS a2, " se
- - .'~%§,’4x§'«-
Y e I ant =,

-100 -100 .
050 -025 000 025 050 075 100 050 -025 000 025 050 075 100

Fig. 4. Clustering results of SDP, DBSCAN, SPECTACL, DENCLUE over
multi-dimensional datasets: (top) wine (bottom) ecoli

3.3 Evaluation of cluster centers

In this section, we introduce another performance measure:
center quality. That is, we define the measure by calculating
the percentage of the data points that have the same label
as their cluster centers, i.e. the ratio of correct cluster as-
signment. We give an example to illustrate the importance
of the new measure in Figure 5. Let the squares and tri-
angles represent the data points with Class 1 and Class 2,
respectively, and the output is classified into two clusters.
The Rand index of the output is 0.69. If one algorithm selects
A and C as cluster centers, the center quality of the output
is 0.8182. However, if B is selected as the center of the left
cluster instead of A, the center quality drops to 0.5909, even
though the value of the Rand index remains the same.

TABLE 5
Cluster center quality of SDP and DP
Dataset SDPgist SDPgen Density Peaks

aggregation 0.9975 1.0000 1.0000
flame 1.0000 1.0000 1.0000

s3 0.8628 0.8598 0.8598
wine 0.9607 0.9382 0.9382
wdbc 0.9525 0.9402 0.9402
ecoli 0.7708 0.7827 0.5863
dermatology 0.8496 0.8073 0.8492

As shown in Table 5, SDP still performs well with respect
to the center quality measure. Similarly, SDPg;st performs
slightly better than SDPgen and DP over all the datasets
except aggregation and ecoli, while SDPg4e, and DP have

TABLE 6

Time Series Datasets Properties

Dataset #of Instances # of Clusters Time Series Length ~ Warping Windows(%)
50 Words 455 50 270 6
WordSynonyms 638 25 270 8
Medicallmages 760 10 99 20

exactly the same performance in the first five datasets. In
the next section, we show the improvement of SDP against
DP for time-series datasets.

D
a0

Fig. 5. An example to illustrate the center quality measure; There is
no difference in the Rand index of the output clusters when we select
different centers in the left cluster. However, the center quality is different
when we choose A or B as the center.

4 TIME SERIES DATA

In this section, we consider time-series data (in non-metric
spaces) and compare SDP with other clustering algorithms.
The past studies [3], [25], [30] pointed out that for time series
data, DTW is better exploited than Euclidean Distance,
especially when dealing with clustering problems. We detail
the settings as follows.

Datasets. For each dataset, we computed the similarity ma-
trix as an input for all algorithms. In the experiment for
time-series data, the similarity matrices are calculated using
DTW. Each dataset has a different warping window of DTW
as shown in Table 6 [25].

4.1

Table 7 compares the clustering performance of SDP against
other clustering algorithms. The results demonstrate that
SDP outperforms the others in precision, F-measure, Rand
index and NMI except for the Medicallmages dataset in
which DBSCAN has better performance. First of all, we
look into the performance difference between SDP and DP
for the time-series datasets. SDP derived better precision,
recall, F-measure, Rand index and NMI than DP for all the
instances. Moreover, SDP obtains a significant improvement
against DP in precision (that is, 0.3186 for 50 Words, 0.2481
for WordSynonyms and 0.1712 for Medicallmages). We also
notice that both SDPgiet and SDPgen perform better than all
the other four approaches in each of precision, F-measure,
Rand index and NMI (except DBSCAN for the Medicallm-
ages dataset). DBSCAN actually has the best performance
in recall (with the setting of minPts = 4 and € = 0.05). We
remark that we did not compare SDP with K-Means over
time-series datasets because K-Means is usually performed

Comparison result

in metric spaces. We also ignore DENCLUE 2.0 because it
obtained a poor clustering for each time-series dataset, after
trying all possible settings of its smoothing parameter.

One can observe that SDP works better especially for
the datasets containing clusters with significantly differ-
ent sizes. For example, let us take a close look at the 50
Words dataset with 50 clusters. The five largest clusters
of 50 Words contain 57, 42, 35, 34 and 28 data points,
respectively; however, the median cluster size of 50 Words
is only five. Therefore, density-based algorithms, such
as DBSCAN, SPECTACL and DP cannot work well when
extending or growing their clusters with a fixed setting of e.
Moreover, the center selection strategy of DP may choose a
center with a large local density but a small distance to its
CHD. Figure 6 explains the reason why SDP derives better
precision, but DBSCAN, SPECTACL and DP considered the
points in the lower right corner to be outliers or a couple
of clusters of points. Similarly, Figure 7 also illustrates the
superior performance of SDP against other algorithms.

TABLE 7

Performance comparison between SDP and other clustering algorithms
over time-series datasets

Algorithm | Precision | Recall | F-Measure | Rand Index | NMI
50 Words
Hierarchical 0.9204 0.8850 0.9024 0.9913 0.96
DBSCAN 0.6397 0.9660 0.7697 0.9737 0.90
SPECTACL 0.3495 0.3878 0.3676 0.9392 0.81
DP 0.6453 0.5540 0.5962 0.9658 0.85
SDPgen 0.9768 0.9212 0.9482 0.9954 0.97
SDPg;s 0.9639 0.8963 0.9289 0.9937 0.96
WordSynonyms
Hierarchical 0.8114 0.6163 0.7005 0.9534 0.86
DBSCAN 0.6382 0.9600 0.7667 0.9484 0.85
SPECTACL 0.4724 0.3976 0.4318 0.9075 0.79
DP 0.6338 0.4982 0.5579 0.9302 0.83
SDPgcn 0.8599 0.8485 0.8542 0.9744 0.90
SDP ;g 0.8819 0.8983 0.8900 0.9804 0.89
Medicallmages
Hierarchical 0.9367 0.6214 0.7471 0.8757 0.86
DBSCAN 0.9558 0.8212 0.8834 0.9359 0.86
SPECTACL 0.5479 0.3956 0.4594 0.7250 0.65
DP 0.8041 0.5272 0.6369 0.8224 0.75
SDPgc, 0.9753 0.6217 0.7594 0.8836 0.88
SDPg;st 0.9774 0.6045 0.7470 0.8790 0.86

4.2 Other evaluations

Next we consider the accuracy of each cluster center, i.e.
cluster center quality. As shown in Table 8, the center selection
strategy of SDP also outperforms DP in terms of center qual-
ity. SDP obtains an improvement of center quality against
DP on the three datasets, precisely, by 24% for 50 Words,
14.85% for WordSynonyms and 3.67% for Medicallmages.
As previously mentioned, we also refer to [8] and discuss
the parameter sensitivity of SDP concerning the setting of
cutoff distance. Here we used one metric dataset and one
time series dataset: wine and Medicallmages, respectively

50words_SDP_density S0words_SDP_distance

10 oz“‘_ 10 | 0 SR —S

SCSEIRE) T
’ A ’ et LA
o X2 e 10 X3

oo o
s

geve,

ot

-20 ® Seg % 0°
S, ?

. . -V, -

Fig. 6. Clustering results of SDPgen, SDPgist, DP, DBSCAN, Hierarchical
and SPECTACL over the 50 Words dataset

medicalimages_SOP_density

medicalimages_SOP_distance

o ememmem——c.
e @ cmmmm o apwes o
o cmesmmm— ces

®® 0o s mome coman o

o seccoe > . . coe
* em o cummmer 0w
* omme

O I —s

-lo 65 00 05 10 15

-Is -lo -0s 00 05 10 15 -1s

medicalimages_DP
G o0 ememe——y c

medicalimages_DBSCAN
20 comme—nns

- oo e o
0 comsmmemmmm cos

e mwcmmm o apee o
a o0 cmemm=— cco 4

®® 0o o mome coman o woo o

® e DETTRT

o ¢ eme cummmes o 0

* emme
e—mne

-2 -2

5y o . TGy s o
4s -lo -5 oo 05 10 15 s -lo 65 odo 05 10 15
medicalimages_Hierarchical medicalimages_Spectacl
s O m—- 3 —
- nm = . cmms o e o wm—— o apes o
N 0 comsmmemmess soo a o o smemmne o o
*® 0 o momo coman *® 0 o mome coman o
2 2 ©
® ec e . seocce - .
. . oo cummmer om
cmme.
2 -2 ‘ -
o S e TR o

Fig. 7. Clustering results of SDPgen, SDPyist, DP, DBSCAN, Hierarchical
and SPECTACL over the Medicallmages dataset

and examined the range of cutoff distances, letting the
average local density lie between 1% to 3% of the total
number of data points in the dataset. As shown in Figure 8,
our SDP algorithm is capable of selecting an appropriate
value of cutoff distance. Thus, the result demonstrates the
robustness of SDP as well as its stable performance of the
output clustering. Precisely, the standard deviations of Rand
index for SDPgist and SDPgen are very low, only 0.0191
and 0.0375, respectively for wine (and 0.0112 and 0.0093,

respectively for Medicallmages).

TABLE 8
Cluster Center Quality of SDP and DP
Dataset SDPg4it SDPgen, Density Peaks
50 Words 0.7231 0.7187 0.5495
WordSynonyms 0.5799 0.6129 0.5219
Medicallmages 0.5013 0.5395 0.5197
wine Medicallmages
1 — 10
f S|
- .
P L R I Oy B A U g g A S

Cutoff Distance

——SDP_dist ===SDP_den

(a) (b)

Fig. 8. The robustness of our SDP algorithm for (a) wine; and
(b)Medicallmages

5 DyNAMIC MODEL

In this section, we refer to [7] which studied the dynamic
version of DBSCAN using a grid graph approach, and
particularly consider the dynamic model of SDP from the
theoretical perspective. We mainly discuss two operations:
data point addition and data point deletion. Any dynamic
operation may change the local connectivity of a dataset,
so clustering results may vary by operations [19]. To avoid
re-computing the entire dataset, we attempt to design the
dynamic version of SDP, called the dynamic seed-and-
extension-based density peaks (DSDP) to reduce the dy-
namic effects. We also devise the dynamic operations of
DP, called dynamic density peaks (DDP) as well. Numerical
comparisons between DSDP and DDP are provided later.

We let p be the point added into the input dataset
or removed from the dataset during dynamic operations.
Assume there are n data points in total after point insertion
or deletion. Note that there are three main procedures of
SDP in which the last two procedures are performed based
on the first procedure of calculating the quantities p and 9.
Here we divide the dynamic algorithm into two parts: J, p-
updates and cluster updates.

5.1 0, p-Updates

There is no obvious difference between DSDP and DDP
regarding ¢, p-updates. In the following, we discuss the
dynamic updates of p and §, respectively.

5.1.1 Update of the local density

The local density p; of a point ¢ is defined as the number of
points within the cutoff distance, d., of point ¢. For dynamic
point p, we denote the set of points in the local zone of p by
L; that is, only the local points in L may change their p due
to the dynamic operation of p.

Lemma 1. Given a point p, it takes O(n) time to update every
local density p;, 1 < i < n, if needed, for point insertion of p,
and it takes O(|L|) time for point deletion of p, where |L| is the
number of points in the local zone of p.

Proof. Obviously, the ¢, p-updates can be done if we go
through all the n data points. For point insertion, when p
is inserted, we first identify the points that are in the local
zone of p by checking the distance between p and all the
other points. Here, for each point, we use a linked list to
store the points in its local zone. It takes O(n?) preprocessing
time and O(n?) space. To check the distance between n — 1
pairs of points and update the lists, it takes O(n) time. For
point deletion, we construct an inverse array to store every
position in the linked list of the local zone of each point.
When p is deleted, we can check the inverse arrays and
update the lists of local points for every point in the local zone
of p as well as their local density in constant time. Hence,
the local density p of the local points of p can be updated in
O(|L|) time.

We remark that the process of checking if any other
points lie in the local zone of p can be done more efficiently,
e.g., using range tree, but the update of the densities of these
points still takes at least O(|L|) time. O

5.1.2 Update of the CHD

Next, we discuss the change of the other quantity . Let
PL,... denote the highest density of local points in L. Note
that if p; changes, J; may also change due to the dynamic
operations. The following lemma shows the necessary con-
dition of updates of J.

Lemma 2. Given a dynamic point p with the set of its local points
L, a point © may change its 0; and CHD; only if p; < pr,

mawx

Proof. Consider a point ¢ with p; > pr,. . . By Definition 2,
0; is defined to be the minimum distance between point
1 and any other point with a higher density. Since the
dynamic operation changes only the density of local points
in L, the local points cannot become candidates of CHD; if
pi > pr,...- Thus, §; and CHD; of point 7 do not change,
and the proof is complete. O

Based on Lemma 2, we consider only the points in the
local zone of p as well as the points with their density lower
than py, ... First, we sort all data points by their local
density in descending order and build a sorted list. We also
spend O(n?) preprocessing time and O(n?) space collecting
a sub-list of the points with higher density than p; from the
sorted list, for each point 1 < ¢ < n. Then, for each point %,
we construct a minimum heap for each sub-list, where the
value of each heap node j in the heap structure represents
its distance from i, i.e. d;;.

Lemma 3. For each point i, ; and CHD; can be updated, if
needed, in O(logn) time.

Proof. When quantity p is updated due to point insertion
or deletion, the sorted list as well as all the sub-lists can
be updated in O(n + |L|) time. For each point i, the heap
structure can return the minimum value in constant time
and can be updated in O(logn) time. Therefore, the total
update time is bounded by O(nlogn). Note that we con-
sider only the points with lower density than py, .., which
can significantly reduce the update time in practice using an
index-based approach. O

More precisely, we look into the points that will change
their CHD and will then be assigned to different clusters

10

during the seed-and-extension procedure. First, a local point
i € L may change its CHD due to the insertion or dele-
tion of p; that is, ¢ may be assigned to a different cluster
because the value of p; increases or decreases by one so
that CHD; changes. Next, we consider the non-local points
in the neighboring levels of a local point i in the tree
structure, i.e. i’s parents and i’s children. Obviously, i’s
parents will not change its CHD if it is not in L. Thus, i’s
parents remain in its original cluster. On the other hand, if
j ¢ L is a child of 7 in the tree structure, j may change its
CHD since the deletion of a dynamic point p may violate
CHD; = i by definition. The following lemma specifies the
points that may change their CHD in the tree structure. Note
that this lemma would be helpful to the updates of cluster
assignment labels.

Lemma 4. During the seed-and-extension procedure, a point may
change its CHD in the tree structure due to dynamic operations
if and only if it is a local point in L or if it is the child of a local
point.

Proof. As mentioned, a local point as well as its child may
change their CHD due to dynamic operations, even if the
child is not in L. Consider a point i which is neither in
L nor a child of any local point in the tree structure. We
are aware that ¢’s parents (more precisely, ¢’s ancestors) do
not change its CHD if it is not in L. Moreover, let j be i’s
descendant and based on the assumption, neither j nor j’s
parents are in L. It is straightforward to see that j does not
change its CHD because both p; and the value of p of j’s
parents remain unchanged. O

5.2 Cluster updates

The next step is to find new cluster centers and update
the assignments for all the points, if needed, based on the
dynamic updates of quantities. As mentioned in Section 3,
we use the seed-and-extension procedure to select centers in
SDP; in contrast, DP simply picks centers from the sorted
list heuristically. Here, we follow Algorithm 2 for the cluster
center selection in DSDP (as shown in Algorithm 5). Note
that the sorted -y list can also be maintained by a minimum
heap structure, which takes O(mlogn) time, where m de-
notes the number of points that have a lower density than

pL'ma:z :

Algorithm 5: Cluster Center Selection of DSDP

Input: Data, the input clustering dataset; k, the number of
clusters; centers, a list of points as the former cluster
centers; Vsorted, the vector in descending order for center
candidates; d, the distance to the CHD point; CHD, the
closest data point with a higher density; L*, a set of local
points and their children for checking cluster updates;

Output: : new centers, a list of the points as present cluster
centers; assignment, cluster labels for each data point;
checking points, the points that have to be checked after
cluster center selection;

1: new centers = Algorithm 2(Data, k, Ysorted, 6, CHD);

2: L* = intersect(L*, difference(centers, new centers));

3: L* = intersect(L*, CHD = difference(new centers, cen-
ters));

The cluster assignment updates of DDP are the same as
the third procedure of DP; that is, reassigning all the data
points according to the updates of quantities (as shown
in Algorithm 6). Precisely, each unassigned data point is
assigned to its CHD’s cluster (similar to Algorithm 3).
Hence, DDP takes O(nlogn) time for the whole procedure
of cluster updates.

Algorithm 6: DDP: Dynamic Density Peaks Cluster Assign-

ment

Input: Data, the input clustering dataset; CHD, the closest
data point with a higher density; p, local density vector
for all points in the dataset; J, the distance to the CHD
points;

Output: Assignment, cluster labels for each data point

. [psorted, sortedIndex] = Sort(p, descend);

: for ¢ =1 to the size of Data do

if Assignment(sortedIndex(i)) is not done then
Assign sortedIndex(i) to the cluster in which its
CHD point lies;

end if

6: end for

a

On the other hand, the dynamic updates of the cluster
assignment labels in DSDP can be done more efficiently
using the merits of the seed-and-extension approach. More
precisely, in order to avoid reassigning all the data points
that have to be updated, we modify the clusters, if necessary,
according to dynamic updates of quantities by adjusting
the structure of the spanning forest built by SDP. Based
on Lemma 4, we consider only the set of points that may
change their CHD. For ease of convenience, we denote the
set by L*. Notice that a cluster center may belong to another
different cluster from its CHD, due to dynamic updates.
Therefore, if there is any change on a cluster center, we need
to put the center point into L* even its CHD remains the
same.

Here we describe the steps of updating the cluster as-
signment in DSDP. The idea of Algorithm 7 is as follows:
The cluster centers and L* are updated by Algorithm 5 due
to dynamic operations. Then we check if each point in L*
has the same cluster as its CHD. If not, its cluster assignment
is updated level by level and so are its descendants. Because
each point should have the same cluster as its CHD except
center points, when reassigning a point, we move the whole
subtree rooted at the point in the tree structure. Figure 9
illustrates an example of updating the tree update. The fol-
lowing lemma thus shows that DSDP can update the cluster
assignment in O(|L*|) time, where |L*| is the number of
points we have to check.

Lemma 5. The cluster assignment can be dynamically updated
in O(|L*|) time.

Proof. Algorithm 7 checks the points in L* level by level in
a top-down manner in the tree structure. As mentioned, if a
point is reassigned to a new center, then its descendants
follow according to the seed-and-extension procedure of
SDP. The cluster assignment can be simply done by moving
the whole subtree rooted at the point, and so too its de-
scendants. Hence the assignment can be updated in O(|L*|)
time. O

11

Fig. 9. An example illustrating a simple tree update operation due to a
dynamic insertion of p. (Left) Assume point A and point B belong to
different clusters but have the same local density, i.e. p4 = pp, where
point O and point B are the centers of their clusters, respectively, and
po > pa + 1. We also assume dap < dao- (Right) Suppose B € L
and thus pp := pp +1 due to the insertion of p. Then CHD 4 is changed
from O to B, and the subtree rooted at A is moved so that A is a child
of B.

Algorithm 7: DSDPgen: Dynamic Density-based Cluster
Assignment

Input: Data, the input clustering dataset; CHD, the closest
data point with a higher density; new centers, a list of the
points as present cluster centers; checking points, a list of
points as check points for updating clusters;

Output: Assignment, cluster labels for each data point

1: [Coorted, sortedIndex] = Sort(checking points, descend)

2: for i = 1 to the size of checking points do

3: if Assignment(sortedIndex(i))7#
Assignment(CHD(sortedIndex(i))) then

4 update list = sortedIndex(i)

5 cluster label = Assignment(CHD(sortedIndex(i)))

6 while update list is not empty do

7: update list = update list delete new centers

8 Assignment(update list) = cluster label

9 next = find(CHD = update list))

10: update list = next
11: end while

12: end if

13: end for

We recall Algorithms 3 and 4 in SDP, which assign the re-
maining points that are not in the local zone of any selected
cluster centers, using the density-based assignment and
distance-based assignment approaches, respectively. The re-
assignment of SDPge, can be dynamically performed in a
similar way as above, i.e. using the merit of the tree struc-
ture. However, the distance-based assignment approach
makes no difference between SDPg and DP regarding
cluster re-assignment. We need to check each point outside
the local zone of all the cluster centers and update them one
by one. We thus suggest SDPgen be applied in the dynamic
model.

We conclude that, in the dynamic model, the d, p-updates
take O(nlogn) time for both DSDP and DDP by Lemma 1
and Lemma 3. Furthermore, DSDP can reduce the update
time in practice by Lemma 2 using an index-based approach.
Concerning the cluster updates, DSDP considers only the
points in L*, and efficiently updates the tree structure, if
needed, while DDP has to traverse all n data points due
to dynamic operations. This difference reveals the advan-
tage of using DSDP, especially for a large-scale dataset. In
particular, DSDP performs faster than DDP regarding the
total update time when choosing an appropriate setting of
the cutoff distance d.. The experiment results compare the
performance of DSDP and DDP in Section 5.3.

5.3 Evaluation of dynamic model

SDP not only performs well in the static model, but also
takes less time than DP for dynamic updates. In the previous
subsection, we discuss the algorithm design of DSDP (the
dynamic version of SDP) as well as the theoretical analysis
of DSDP and DDP (the dynamic version of DP). Here,
we carry out numerical comparisons between DSDP, DDP
and SDP to demonstrate the superior performance of DSDP
regarding running time. Note that the clustering results of
DSDP and SDP are exactly the same, so we only consider
the execution time issue in the dynamic model. We thus
tested the algorithms mainly on large-scale datasets, and
the experiments were conducted on another machine with
Intel Xeon Gold 6154 3.70GHz and 360GB memory.

TABLE 9
Dataset properties

Dataset # of Instances # of Clusters
MNIST 60000 10
shuttle 58000 7
avila 20867 12
HTRU2 17898 2
ESR 11500 5
s3 5000 15

The dataset properties are shown in Table 9. For each
of the six datasets, we perform fifty random dynamic op-
erations to simulate dynamic data inputs. The two key
procedures of each dynamic operation of DSDP are 6, p-
updates and cluster updates, as discussed earlier. We eval-
uate the average time cost of every procedure for each
experiment. Note that we consider the center selection time
independently for only DSDP and SDP (i.e. Algorithm 5 and
Algorithm 2, respectively) as shown in Figure 10(bottom),
because DDP and DP immediately determine their cluster
centers once the J, p-updates have been done. The figure
shows that DSDP and SDP have almost equal time cost
over the six datasets, since the key difference in the cluster
updates occurs in cluster assignment.

Figure 10(top) and (middle) show that DSDP is clearly
faster than its static version (SDP) as well as the dynamic
version of DP (DDP), which reveals the advantage of the
design of the dynamic algorithm. Precisely, DSDP takes at
least 9% less time than DDP concerning the 4, p-update
time cost (17.18% for MNIST, 23.61% for shuttle, 19.63%
for avila, 22.84% for HTRU2, 9.09% for ESR and 17.65%
for s3), as shown in Figure 10(top). Moreover, the cluster

12

delta, rho-update time cost
35.00 NG
30.00 &

25 00

time cost (s/operation)
e N
S »m o u o
o o o & ©
< =] =] =] =]
o,
<.
% <5
]
=5,
7
|
>
2
%%
%
a,
<%
%o,

« XX & EUCAS
'» ?’ Q GRS
& o R NIC A
ll [BT TT B
MNIST shuttle avila HTRU2 ESR s3
mDSDP WDDP mSDP mDP
Cluster update time cost
50.00
=7
D;»“’ *» %“
= ¥ L
S 40.00 9
B 2
] 5
S 30.00 {
L
&
£
& 2000 ‘;,G b:g o P
8 '\, \’. ,\'(1,
Qo r\l.{’))
E 10.00 I aZ SR
. &
F '\,
000 —— G . n
MNIST shuttle avila HTRU2 s3
mDSDP mDDP mSDP mDP
Center selection time cost
0.50
5 040 0’;’0’,’3& 9??07?}
E
2 030
<]
2
2
% 020
o
8
o
£ & &
= 0.10 QT QT & $ &> o P
- eSS eSS SN
0.00 I [| [| [|
MNIST shuttle avila HTRU2 ESR s3

HDSDP mSDP

Fig. 10. Comparison results between DSDP, DDP, SDP and DP for each
dataset: (top) ¢, p-update time (middle) cluster update time (bottom)
center selection update time

update procedure of DSDP takes under 2 milliseconds even
on the two largest datasets (MINST and shuttle) with sizes
close to 60,000 points, while the other three (DDP, SDP
and DP) take about 30 milliseconds or more. In particular,
DSDP performs almost 20 times faster than the other three
algorithms on each dataset, as shown in Figure 10(middle).
We remark that the static version, DP has a slightly quicker
cluster update time than DDP in some experiments (see
Figure 10(middle)) because both of them take O(nlogn)
time for the cluster updates and sometimes the hidden
constant factors vary due to random dynamic operations,
especially under such a small time cost. In addition, another
interesting observation is that SDP and DP perform slightly
faster than DDP in the HTRU2 dataset regarding J, p-update
time (see Figure 10(top)). We believe that the reason comes
from the small number of clusters in HTRU2, which leads
to a very close running time in practice. We also tested the
algorithms on another larger dataset, Dota2 with 102,944
points but the benefit of DSDP and DDP is again not obvious
because of the same reason. (Dota2 has only two clusters.)
Finally, we remark that the standard deviation is low for

every test. For example, in avila, the standard deviations of
d, p-update time are 0.6736, 0.0161, 0.0575 and 0.0051 (s) for
DSDP, DDP, SDP and DP, respectively; for cluster update
time, 0.06, 0.36, 0.31 and 0.33 (ms) for DSDP, DDP, SDP and
DP, respectively; and for center selection time, 0.047 and
0.015 (s) for DSDP and SDP, respectively.

Finally, DSDP achieves a significant improvement over
DDP as well as their static versions (SDP and DP) concern-
ing the total update time. As shown in Figure 11, DSDP
outperforms DDP on every dataset; precisely, 15.96% less
time for MNIST, 23.52% less time for shuttle, 7.01% less
time for avila, 21.32% less time for HTRU2, and 5.19%
less time for ESR. Obviously, DSDP performs much better
than DDP especially on a large dataset with more than
50,000 points. One can observe that the performance in
avila is not as good as the other two larger datasets (only
7 percent improvement) because DSDP takes more time on
center selection. We remark that DSDP can perform better
by choosing a more appropriate value of the cutoff distance,
i.e. d., as we have already shown the robustness of SDP
concerning the setting of the cutoff distance in Section 4.2.

35.00

Dynamic update total time cost
30.00
25.00

»
20.00
15.00
10.00
D
500 AT 5P D b as sam s
Yot %% MYV
0.00 lll-ll---,,,

MNIST

N
,‘:c A

time cost (s/operation)

=3

shuttle avila HTRU2 ESR s3

EDSDP WDDP mSDP EDP

Fig. 11. Comparison of total update time between DSDP, DDP, SDP and
DP for each dataset

6 CONCLUSION

We have proposed the seed-and-extension-based density
peaks (SDP) algorithm which can find a more accurate
clustering while keeping the property of the output clus-
ters. Moreover, we have given the option to the algorithm
that can form the clusters based on the data itself. Our
SDP algorithm has better performance than the state-of-the-
art clustering algorithms in the literature especially for a
variety of datasets. SDP also performs well when dealing
with a large number of clusters and even clusters with
significantly different densities. We conclude by suggesting
several research directions and open problems. For clus-
tering approaches, it is always a challenge to calculate the
distance matrix of an input dataset, i.e. O(n?) complexity for
both time and space issues. Some previous studies [6], [20],
[22], [21], [16] investigated parallel incremental clustering
algorithms for overcoming the challenge. It would be worth-
while to incorporate parallel computing techniques to solve
the problem. We also believe that it would be interesting to
consider learning-based clustering algorithms for datasets
with different properties, especially for classification prob-
lems or database indexing frameworks. That is, it would be

13

of independent interest to determine the number of clusters
or decide the settings of a clustering algorithm in a more
efficient way.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for helpful
comments, and Yi-Fang Yang for conducting partial compu-
tational experiments in the supplementary. We also thank
the support from MOST Taiwan (under Grants 110-2221-E-
007-106-MY3 and 110-2622-8-007-017-SB), National Center
for High-performance Computing (NCHC) and the Brain
Research Center under the Higher Education Sprout Project.
Our software is available freely for non-commercial pur-
poses from: http:/ /acolab.ie.nthu.edu.tw/sdp/

REFERENCES

[1] N. Begum, L. Ulanova, J. Wang, and E. Keogh. Accelerating
dynamic time warping clustering with a novel admissible pruning
strategy. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD "15, pages
49-58, New York, NY, USA, 2015. ACM.

[2] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and
G. Batista. The ucr time series classification archive, July 2015.

[3] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh.
Querying and mining of time series data: Experimental compari-
son of representations and distance measures. Proc. VLDB Endow.,
1(2):1542-1552, August 2008.

[4] M. Du, S. Ding, and H. Jia. Study on density peaks clustering
based on k-nearest neighbors and principal component analysis.
Knowledge-Based Systems, 99(1):135-145, 2016.

[5] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters a density-based algorithm for
discovering clusters in large spatial databases with noise. In Pro-
ceedings of the Second International Conference on Knowledge Discovery
and Data Mining, KDD’96, pages 226-231. AAAI Press, 1996.

[6] Martin Ester, Hans-Peter Kriegel, Jérg Sander, Michael Wimmer,
and Xiaowei Xu. Incremental clustering for mining in a data
warehousing environment. In Proceedings of the 24rd International
Conference on Very Large Data Bases, VLDB ‘98, page 323-333, San
Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[7] Junhao Gan and Yufei Tao. Dynamic density based clustering. In
Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD 17, page 1493-1507, New York, NY, USA, 2017.
Association for Computing Machinery.

[8] J.Gao, L. Zhao, Z. Chen, P. Li, H. Xu, and Y. Hu. Icfs: An improved
fast search and find of density peaks clustering algorithm. In
Proceedings of the IEEE 14th Intl Conf on Dependable, Autonomic
and Secure Computing, 14th Intl Conf on Pervasive Intelligence and
Computing, 2nd Intl Conf on Big Data Intelligence and Computing and
Cyber Science and Technology Congress, pages 537-543. IEEE, 2016.

[9] Duivesteijn W. Honysz P. Morik K. Hess, S. The spectacl of non-
convex clustering: a spectral approach to density-based clustering.
In Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
AAAI 2019, pages 3788-3795, 2019.

[10] Alexander Hinneburg and Hans-Henning Gabriel. Denclue 2.0:
Fast clustering based on kernel density estimation. In IDA, LNCS
4723, pages 70-80. Springer, 2007.

[11] Alexander Hinneburg and Daniel A. Keim. An efficient approach
to clustering in large multimedia databases with noise. In Proceed-
ings of the Fourth International Conference on Knowledge Discovery
and Data Mining, KDD’98, page 58-65. AAAI Press, 1998.

[12] Jian Hou, Chengcong Lv, Aihua Zhang, and E Xu. Merging dbscan
and density peak for robust clustering. In International Conference
on Artificial Neural Networks, pages 595-610. Springer, 2019.

[13] L. Kaufman and PJ. Rousseeuw. Finding Groups in Data: an
introduction to cluster analysis. Wiley, 1990.

[14] S. Kokoska and D. Zwillinger. CRC Standard Probability and
Statistics Tables and Formulae. Chapman and Hall CRC., 2000.

[15] H.-P. Kriegel, P. Kroger, J. Sander, and A. Zimek. Density-based
clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 1(3):231-240, 2011.

[16] Hans-Peter Kriegel, Peer Krooger, and Irina Gotlibovich. Incre-
mental optics: Efficient computation of updates in a hierarchical
cluster ordering. In International Conference on Data Warehousing
and Knowledge Discovery, pages 224-233. Springer, 2003.
T Warren Liao. Clustering of time series data—a survey. Pattern
recognition, 38(11):1857-1874, 2005.
[18] J. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Statistics, pages
281-297, Berkeley, Calif., 1967. University of California Press.
S. T. Mai, S. Amer-Yahia, I. Assent, M. S. Birk, M. S. Dieu,
J. Jacobsen, and J. M. Kristensen. Scalable interactive dynamic
graph clustering on multicore cpus. IEEE Transactions on Knowledge
and Data Engineering, 31(7):1239-1252, 2019.
Son Mai, Jon Jacobsen, Sihem Amer-Yahia, Ivor Spence, Phuong
Tran, Ira Assent, and Quoc Viet Hung Nguyen. Incremental
density-based clustering on multicore processors. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2020.
Son T Mai, Ira Assent, and Martin Storgaard. Anydbc: An efficient
anytime density-based clustering algorithm for very large com-
plex datasets. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1025-1034,
2016.
Son T Mai, Xiao He, Jing Feng, Claudia Plant, and Christian Bohm.
Anytime density-based clustering of complex data. Knowledge and
Information Systems, 45(2):319-355, 2015.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.
Dan Pelleg and Andrew W. Moore. X-means: Extending k-means
with efficient estimation of the number of clusters. In Proceedings
of the Seventeenth International Conference on Machine Learning,
ICML 00, page 727-734, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.
T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh. Searching and mining trillions
of time series subsequences under dynamic time warping. In
Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 12, pages 262-270,
New York, NY, USA, 2012. ACM.
Sangeeta Rani and Geeta Sikka. Recent techniques of clustering
of time series data: a survey. International Journal of Computer
Applications, 52(15), 2012.
A. Rodriguez and A. Laio. Clustering by fast search and find of
density peaks. Science, 344(6191):1492-1496, 2014.
R. Sibson. Slink: An optimally efficient algorithm for the single-
link cluster method. The Computer Journal, 16(1):30-34, 1973.
Dongkuan Xu and Yingjie Tian. A comprehensive survey of
clustering algorithms. Annals of Data Science, 2(2):165-193, 2015.
Y. Yuan, Y.-P. P. Chen, S. Ni, A.G. Xu, L. Tang, M. Vingron,
M. Somel, and P. Khaitovich. Development and application of
a modified dynamic time warping algorithm (dtw-s) to analyse
the primate brain expression time series. BMC Bioinformatics,
12(1):347, Aug 2011.
[31] J. Zhang, Y. Pei, G. Fletcher, and M. Pechenizkiy. Evaluation of
the sample clustering process on graphs. IEEE Transactions on
Knowledge and Data Engineering, 32(7):1317-1332, 2020.

(17]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

Ming-Hao Tung received his BSc degree in Life
Science from National Chung Cheng University,
Taiwan in 2014 and MEng degree in Industrial
Engineering from National Tsing Hua University,
Taiwan in 2017. He is currently working in Micron
Technology. His research interests include data
mining and large-scale clustering. He started
conducting this research work while he was vis-
iting La Trobe University, Melbourne, Australia.

14

Yi-Ping Phoebe Chen (M'04-SM’07) received
the BInfTech and the Ph.D. degrees in com-
puter science from the University of Queens-
land, Brisbane, Australia. She is a Professor and
Chair of the Department of Computer Science
and Information Technology, La Trobe Univer-
sity, Melbourne, Australia. She is also a chief
investigator in the ARC Center of Excellence
in Bioinformatics. She has published over 240
research papers, many of them appeared in top
journals and conferences. She has been edi-
torial board for IEEE Transactions on Neural Networks and Learn-
ing Systems, IEEE Transactions on Multimedia, Gene and Current
Bioinformatics. Phoebe has recently appointed as a member of the
College of Experts of the Australian Research Council. She is the
Steering Committee Chair of the Asia-Pacific Bioinformatics Conference
(founder) and the International Conference on Multimedia Modelling.
She has been involved in research on bioinformatics, artificial intelli-
gence and multimedia. More information about her can be found at
http://homepage.cs.latrobe.edu.au/ypchen/index.htm .

Chen-Yu Liu received his BEng and MEng de-
grees in Industrial Engineering from National Ts-
ing Hua University, Taiwan in 2017 and 2019,
respectively. He is currently working in Greatek
Electronics. His research interests include data
mining and dynamic clustering.

Chung-Shou Liao (M'14-SM’20)Chung-Shou
Liao joined the faculty of Department of In-
dustrial Engineering and Engineering Manage-
| ment, National Tsing Hua University (NTHU) in
. February 2010. He has served as a full profes-
a sor since August 2018. Before joining NTHU,
1 he had worked in Algorithms and Computation
Laboratory at Institute of Information Science,
Academia Sinica for eight years. His research
mainly focuses on designing efficient algorithms
that can be used to solve difficult combinatorial
optimization problems from real applications. His lab has developed
approximation algorithms with theoretical analysis for well-known hard
problems such as online shortest path, facility location, domination,
and scheduling and packing problems. Dr. Liao has also extended his
study to systems biology. He has designed graph-theoretic algorithms
for global alignment between multiple biological networks and conducted
comparative analysis across species.

Dr. Liao received Outstanding Young Researcher award of [ICM (ACM
Taiwan) in 2014. He is also a Fulbright Senior Research Scholar for 2018
and 2019. Dr. Liao served as Program Committee Chair of AAAC 2016
and AAAC 2021 (Annual Meeting of Asian Association for Algorithms
and Computation) and ISAAC 2018 (the 29th International Symposium
on Algorithms and Computation). He is Board Member of AAAC, Steer-
ing Committee Member of ISAAC, and Associate Editor of Journal of
Combinatorial Optimization. Dr. Liao is Senior Member of ACM and
IEEE.

